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TOPOLOGICAL ENTROPY OF EXPANSIVE FLOWS ON

UNIFORM SPACES

Jongsuh Park*

Abstract. We define topological entropy of flows on uniform spaces
and discuss some properties of topological entropy of expansive
flows on uniform spaces.

1. Introduction

We define the topological entropy of dynamical systems on metric
spaces using metric. Uniform spaces are generalization of metric spaces.
We define the topological entropy of flows on uniform spaces and discuss
some properties of topological entropy of expansive flows on uniform
spaces.

Let X be a set. The set △X = {(x, x) | x ∈ X} denotes the diagonal
in X × X. The inverse α−1 of a set α ⊂ X × X is defined by α−1 =
{(y, x) | (x, y) ∈ α}. If α−1 = α then α is called symmetric. The
composite β ◦ α of two subsets α and β of X ×X is defined by

β ◦ α = {(x, z) ∈ X ×X | (x, y) ∈ α and (y, z) ∈ β for some y ∈ X}.
Note that α1 = α, αn+1 = α◦αn and if△X ⊂ α then α ⊂ α2 ⊂ α3 ⊂ · · · .

Definition 1.1. A uniformity on a set X is a collection U of subsets
of X ×X satisfying the following properties:

(1) each member of U contains the diagonal △X ,
(2) if α ∈ U and α ⊂ β ⊂ X ×X, then β ∈ U ,
(3) if α and β are members of U , then α ∩ β ∈ U ,
(4) if α ∈ U , then α−1 ∈ U ,
(5) for every α ∈ U there is β ∈ U such that β2 ⊂ α.
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The set X equipped with a uniformity U is called a uniform space
and an element of U is called an entourage of X.

Let x ∈ X,A ⊂ X and α ⊂ X ×X we define the following notations

α[x] = {y ∈ X | (x, y) ∈ α}

and

α[A] =
∪
x∈A

α[x].

It is obvious that y ∈ α[x] if and only if x ∈ α−1[y] and (β ◦ α)[x] =
β[α[x]]. It is well known that if (X,U) is a uniform space, then the
topology T of the uniformity U is the collection of all subsets A of X
such that for each x ∈ A there is α ∈ U such that α[x] ⊂ A. T is called
the uniform topology generated by U .

Given two uniform spaces X and Y , a map f : X → Y is said to be
uniformly continuous if for each encourage β of Y there is an entourage
α of X such that

(f(x), f(y)) ∈ β for all (x, y) ∈ α.

Let X be a uniform space with uniformity U . A flow on X is a
continuous map ϕ : X × R → X satisfying

(1) ϕ(x, 0) = x for all x ∈ X,
(2) ϕ(x, s+ t) = ϕ(ϕ(x, s), t) for all x ∈ X, s, t ∈ R.

For t ∈ R let ϕt be a homeomorphism of X defined by ϕt(x) = ϕ(x, t)
for all x ∈ X. Denotes by C0(R) the set of all continuous functions
h : R → R such that h(0) = 0.

Definition 1.2. A flow ϕ : X × R → X is said to be expansive if
for every ϵ > 0 there is an expansive entourage α such that if x, y ∈ X
satisfy (ϕt(x), ϕh(t)(y)) ∈ α for every t ∈ R and some h ∈ C0(R), then
y = ϕτ (x) where |τ | < ϵ.

Theorem 1.3. Let X be a compact uniform space with uniformity
U . The followings are equivalent for a flow ϕ on X without fixed points.

(1) ϕ is expansive.
(2) For every ϵ > 0 there exists α ∈ U such that if x, y ∈ X satisfty

(ϕt(x), ϕh(t)(y)) ∈ α

for every t ∈ R and some increasing homeomorphism h : R → R
with h(0) = 0, then y = ϕτ (x) for some τ ∈ (−ϵ, ϵ).
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(3) For any α ∈ U there is β ∈ U such that if x, y ∈ X satisfy
(ϕt(x), ϕh(t)(y)) ∈ β for every t ∈ R and some h ∈ C0(R), then
y is on the same orbit as x and the orbit from x to y lies inside
α[x].

(4) For any ϵ > 0 there exist β ∈ U and τ > 0 such that if {ti}∞i=−∞,
{si}∞i=−∞ are bisequences of real numbers with t0 = s0 = 0, 0 <
ti+1 − ti ≤ τ , |si+1 − si| ≤ τ, ti → ∞ and t−i → −∞ as i → ∞
and if x, y ∈ X satisfy (ϕti(x), ϕsi(y)) ∈ β for every i ∈ Z, then
y = ϕt(x) for some t ∈ (−ϵ, ϵ).

Proof. See the [3].

2. Main theorem

We will define the topological entropy of homeomorphisms of uniform
spaces. Let (X,U) be a uniform space and f a homeomorphism of X
and let n ∈ N, α ∈ U . For E,F ⊂ X we say that E (n, α)-spans F with
respect to f if for each x ∈ F there is y ∈ E such that (fk(x), fk(y)) ∈ α
for all 0 ≤ k < n. We let rn(F, α, f) denote the minimum cardinality of
a set which (n, α)-spans F with respect to f . If F is compact, then the
continuity of f guarantees rn(F, α, f) < ∞. For a compact set F ⊂ X
we define

rf (F, α) = lim sup
1

n
log rn(F, α, f)

and
h(f, F ) = sup rf (F, α).

Note that rf (F, α) increases as α decreses.
For α ∈ U and x ∈ X define

Γα(x, f) = {y ∈ X | (fn(x), fn(y)) ∈ α for all n ∈ Z}.
f is called h-expansive if there exists α ∈ U such that h(f,Γα(x, f)) =

0 for all x ∈ X. A flow ϕ on X is called h-expansive if ϕt is h-expansive
for all t > 0.

Theorem 2.1. Let (X,U) be a compact uniform space. Every ex-
pansive flow ϕ on X is h-expansive.

Proof. Let t > 0. For α ∈ U define

Γα(x, ϕ) = {y ∈ X | (ϕs(x), ϕs(y)) ∈ α for all s ∈ R}.
For any τ > 0, since ϕ is expansive there is α ∈ U such that

Γα(x, ϕ) ⊂ ϕ[−τ,τ ](x).
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By integral continuity theorem, there exists β ∈ U such that if (x, y) ∈ β
then (ϕs(x), ϕs(y)) ∈ α for all 0 ≤ s ≤ t. Let y ∈ Γβ(x, ϕt). Then

(ϕnt(x), ϕnt(y)) = (ϕn
t (x), ϕ

n
t (y)) ∈ β

for all n ∈ Z. For any s ∈ R, there is n ∈ Z such that nt ≤ s < (n+1)t.
Since

(ϕnt(x), ϕnt(y)) ∈ β and 0 ≤ s− nt < t,

we have

(ϕs−nt(ϕnt(x)), ϕs−nt(ϕnt(y))) = (ϕs(x), ϕs(y)) ∈ α.

Thus
Γβ(x, ϕt) ⊂ Γα(x, ϕ) ⊂ ϕ[−τ,τ ](x).

Since ϕ : X × [0, 1] → X is uniformly continuous, there exist γ ∈ U
and c ∈ (0, 1) such that if (p, q) ∈ γ, u, v ∈ [0, 1], |u − v| < c, then
(ϕu(x), ϕv(y)) ∈ β for all x ∈ X.

We claim that if u, v ∈ R and |u− v| < c, then (ϕu(x), ϕv(y)) ∈ β for
all x ∈ X.

(a) when u < v, since (ϕu(x), ϕu(x)) ∈ △X ⊂ γ and 0 ≤ v− u < c, we
have

(ϕu(x), ϕv−u(ϕu(x))) = (ϕu(x), ϕv(x)) ∈ β,

(b) when u ≥ v, since (ϕv(x), ϕv(x)) ∈ △X ⊂ γ and 0 ≤ v− u < c, we
have

(ϕu−v(ϕv(x)), ϕv(x)) = (ϕu(x), ϕv(x)) ∈ β.

Since {(s− c, s+ c) | s ∈ [−τ, τ ]} is an open cover of [−τ, τ ] and [−τ, τ ]
is compact, there exist finitely many s1, s2, . . . , sm ∈ [−τ, τ ] such that

[−τ, τ ] ⊂
m∪
i=1

(si − c, si + c).

Let n ∈ N.We claim that {ϕsi(x) | i = 1, 2, . . . ,m} (n, β)-spans ϕ[−τ,τ ](x)
with respect to ϕt. For any s ∈ [−τ, τ ], there is i such that s ∈ (si −
c, si + c). For 0 ≤ k < n, since

|kt+ s− (kt+ si)| = |s− si| < c,

we have

(ϕk
t (ϕs(x)), ϕ

k
t (ϕsi(x))) = (ϕkt+s(x), ϕkt+si(x)) ∈ β.

Thus {ϕsi(x) | i = 1, 2, . . . ,m} (n, β)-spans ϕ[−τ,τ ](x) with respect to ϕt.
Hence rn(ϕ[−τ,τ ](x), β, ϕt) ≤ m for all n ∈ N. Thus

rϕt(ϕ[−τ,τ ](x), β) = 0.
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Hence

h(ϕt,Γβ(x, ϕt)) ≤ h(ϕt, ϕ[−τ,τ ](x)) = 0.

Therefore ϕ is h-expansive.

We will now look at the entropy of an expansive flow ϕ on a uniform
space X with uniformity U . Let t > 0 and α ∈ U . For E,F ⊂ X we say
that E (t, α)-spans F with respect to ϕ if for each x ∈ F there is y ∈ F
such that (ϕs(x), ϕs(y)) ∈ α for all 0 ≤ s ≤ t. Let rt(F, α, ϕ) denote the
minimum cardinality of a set which (t, α)-spans F with respect to ϕ. We
claim that if F is compact then rt(F, α, ϕ) < ∞. We may assume that
α is symmetric. For each x ∈ X, by integral continuity theorem, there
exists a neighborhood Ux of x such that if y ∈ Ux then (ϕs(x), ϕs(y)) ∈ α
for all 0 ≤ s ≤ t. {Ux | x ∈ F} is an open cover of F . Since F is compact,
there exist finitely many x1, x2, . . . , xn ∈ F such that F ⊂

∪n
i=1 Uxi . For

any x ∈ F , there is i such that x ∈ Uxi . Then (ϕs(x), ϕs(xi)) ∈ α−1 = α
for all 0 ≤ s ≤ t. Thus {x1, x2, . . . , xn} (t, α)-spans F with respect to ϕ
and so rt(F, α, ϕ) ≤ n. We define rϕ(F, α) = lim sup 1

t log rt(F, α, ϕ).
Let F ⊂ X. We say that E ⊂ F is a (t, α)-separated subset of F with

respect to ϕ if for any x, y ∈ E with x ̸= y we have (ϕs(x), ϕs(y)) /∈ α
for some 0 ≤ s ≤ t. Let st(F, α, ϕ) denote the maximum cardinality
of a set which is a (t, α)-separated subset of F . We claim that if F is
compact, then st(F, α, ϕ) < ∞. There exists symmetric β ∈ U such that
β2 ⊂ α. For any x ∈ X, by integral continuity theorem, there exists a
neighborhood Ux of x such that if (x, y) ∈ Ux then (ϕs(x), ϕs(y)) ∈ β for
all 0 ≤ s ≤ t. {Ux | x ∈ F} is an open cover of F . Since F is compact,
there exist finitely many x1, x2, . . . , xn ∈ F such that F ⊂

∪n
i=1 Uxi .

If E ⊂ F with ♯E ≥ n + 1, then there exist x, y ∈ E and i such that
x, y ∈ Uxi . Since

(ϕs(x), ϕs(xi)) ∈ β−1 = β and (ϕs(xi), ϕs(y)) ∈ β

for all 0 ≤ s ≤ t, we have

(ϕs(x), ϕs(y)) ∈ β2 ⊂ α

for all 0 ≤ s ≤ t. Thus E is not (t, α)-separated. Hence st(F, α, ϕ) ≤ n.
We define

sϕ(F, α) = lim sup
1

t
log st(F, α, ϕ)

and topological entropy by

h(ϕ, F ) = sup rϕ(F, α) = sup sϕ(F, α).

These limits exist and are equal by following proposition.
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Proposition 2.2. (1) rt(F, α, ϕ) ≤ st(F, α, ϕ) ≤ rt(F, β) where
β2 ⊂ α and β−1 = β.

(2) If α ⊂ β, then we have rϕ(F, β) ≤ rϕ(F, α) and sϕ(F, β) ≤
sϕ(F, α).

Proof. (1) Let E be a maximal (t, α)-separated subset of F . For any
x ∈ F − E, since E ∪ {x} is not a (t, α)-separated subset of F , there
exists y ∈ E such that

(ϕs(x), ϕs(y)) ∈ α

for all 0 ≤ s ≤ t. Thus E (t, α)-spans F . Hence rt(F, α, ϕ) ≤ st(F, α, ϕ).
Let E1 be a (t, α)-separated subset of F and let E2 (t, β)-span F . For
any x ∈ E1 ⊂ F , there exists f(x) ∈ E2 such that (ϕs(x), ϕs(f(x))) ∈ β
for all 0 ≤ s ≤ t. If f(x) = f(y), then we have

(ϕs(x), ϕs(f(x))) ∈ β and (ϕs(f(y)), ϕs(y)) ∈ β−1 = β

for all 0 ≤ s ≤ t. Thus (ϕs(x), ϕs(y)) ∈ β2 ⊂ α for all 0 ≤ s ≤ t.
Since E1 is (t, α)-separated, we have x = y and so f is injective. Thus
♯E1 ≤ ♯E2. Hence

st(F, α, ϕ) ≤ rt(F, α, ϕ).

(2) trivial.

For t > 0, let υ(t) denote the number of closed orbits of ϕ with a
period τ ∈ [0, t] and υc(t) the number of closed orbits of ϕ with a period
τ ∈ [t− c, t+ c].

Theorem 2.3. Let ϕ be an expansive flow on a compact uniform
space X. Then

lim sup
1

t
log υ(t) ≤ h(t) ≡ h(ϕ,X).

Proof. Let ϵ > 0. By Theorem 1.3 (4), there exist α ∈ U and τ > 0
such that if (ti), (ui) are bi-sequences with t0 = u0 = 0, 0 < ti+1 − ti ≤
2τ , |ui+1 − ui| ≤ 2τ for all i ∈ Z, ti → ∞ and t−i → −∞ as i → ∞
and if (ϕti(x), ϕui(y)) ∈ α for all i ∈ Z, then y = ϕt(x) for some |t| < ϵ.
Let x, y ∈ X be distinct periodic points with periods a, b ∈ [t− τ

2 , t+
τ
2 ]

respectively. Let m =
[ t− τ

2
τ

]
+ 1 and put

tpm+q = pa+ qτ, upm+q = pb+ qτ

for (p, q) ∈ Z× {0, 1, . . . ,m− 1}. Then t0 = u0 = 0,

tpm+q+1 − tpm+q = upm+q+1 − upm+q = τ,
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for (p, q) ∈ Z× {0, 1, . . . ,m− 2} and,

0 < t(p+1)m − tpm+m−1 ≤ 2τ,

0 < up(m+1) − upm+m−1 ≤ 2τ,

ti → ∞ and t−i → −∞ as i → ∞.
Suppose that x, y are not (t, α)-separated. Then

(ϕs(x), ϕs(y)) ∈ α for all 0 ≤ s ≤ t.

Since

(ϕtpm+q(x), ϕupm+q(y)) = (ϕqτ (ϕpa(x)), ϕqτ (ϕpb(y))) = (ϕqτ (x), ϕqτ (y))

and
0 ≤ qτ ≤ (m− 1)τ < t,

we have (ϕti(x), ϕui(y)) ∈ α for all i ∈ Z. Thus y = ϕt(x) for some
|t| < ϵ and so we have a contradiction. Hence x, y are (t, α)-separated.
Therefore we have

υ τ
2
(t) ≤ rt(ϕ, α).

Since υ(t) ≤
∑[ t

τ
]

n=1 υ τ
2
(nτ) and rt(ϕ, α) increases with t, υ(t) ≤ t

τ rt(ϕ, α).

Thus we have

lim sup
1

t
log υ(t) ≤ h(ϕ, α) ≤ h(ϕ).

This completes the proof.
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